
RECYCLIZATION OF 2-IMINO-2H-1-BENZOPYRANS BY THE ACTION OF NUCLEOPHILIC REAGENTS 4.* USE OF 2-(N-AROYLHYDRAZONO)COUMARIN-3-CARBOXAMIDES FOR THE SYNTHESIS OF 3-(1,3,4-OXADIAZOL-2-YL)COUMARINS

S. N. Kovalenko, K. M. Sytnik, V. M. Nikitchenko,

S. V. Rusanova, V. P. Chernykh, and A. O. Porokhnyak

A new method for the synthesis of 3-(1,3,4-x) countarins is proposed. It is based on the recyclization of 2-(N-aroylhydrazono) countarin-3-carboxamides, which are readily obtained by the reaction of 2-iminocountarin-3-carboxamides with arenecarboxylic hydrazides in an acidic medium. Advantages of the given method over alternative synthetic schemes were shown. Proposals on the mechanism of reaction were made.

We showed previously [2] that 2-iminocoumarin-3-carboxamides are readily recyclized by hydrazides of carboxylic acids on the heating in butan-1-ol to give $N_{(1)}$ -acylamidrazones of coumarin-3-carboxylic acids. If this reaction is conducted in glacial acetic acid, the opening of the iminolactone ring of the 2-iminocoumarin-3-carboxamides (Ia-d) does not occur, as also in the case of primary amines [3], and products of substitution at the position 2 of the coumarin — 2-(N-aroylhydrazono)coumarin-3-carboxamides (IIa-i) — are formed.

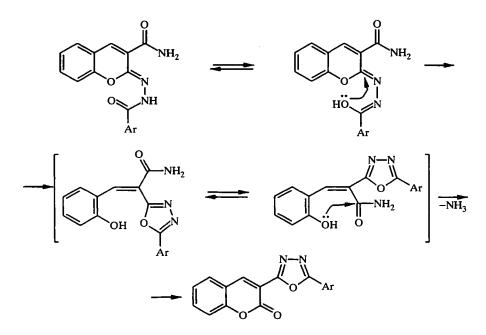
I a $R^{1} = H$; b $R^{1} = 6$ -*n*-C₆H₁₃, 7-OH; c $R^{1} = 7$ -N(C₂H₅)₂; d $R^{1} = 5$,6-benzo; II, III a $R^{1} = H$, $R^{2} = Ph$; b $R^{1} = H$, $R^{2} = 4$ -FC₆H₄; c $R^{1} = 6$ -*n*-C₆H₁₃, 7-OH; $R^{2} = Ph$; d $R^{1} = 7$ -N(C₂H₅)₂, $R^{2} = Ph$; e $R^{1} = 7$ -N(C₂H₅)₂, $R^{2} = 4$ -CH₃C₆H₄; f $R^{1} = 7$ -N(C₂H₅)₂, $R^{2} = 2$ -ClC₆H₄; g $R^{1} = 7$ -N(C₂H₅)₂, $R^{2} = \gamma$ -Py; h $R^{1} = 5$,6-benzo, $R^{2} = Ph$; i $R^{1} = 5$,6-benzo, $R^{2} = 4$ -CH₃OC₆H₄

* For Communication 3, see [1].

Ukrainian Pharmaceutical Academy, Khar'kov 310002. Khar'kov State University, Khar'kov 310077, Ukraine. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 2, pp. 190-193, February, 1999. Original article submitted February 11, 1998.

Com- pound	Empirical formula	Yield, %	mp, ℃	Found, % Calculated, %	IR spectra (KBr), cm ⁻¹ (assignment)	ESA (ethanol), λ_{max} , nm (ϵ)
IIIa	C17H10N2O3	78	216218	<u>9.65</u> 9,73	1744 (ν _{C=O})	342 (20000)
IIIb	$C_{17}H_9N_2O_3F$	55	241243	<u>9,09</u> 9,01	1494, 1610 (ν _{C=C}) 1745 (ν _{C=O})	257 (11000) 339 (17500)
IIIc	C ₂₃ H ₂₂ N ₂ O ₄	68	241242	7 <u>,17</u> 7,22	1570, 1618 (v _{C=C}) 1744 (v _{C=O}) 2922, 2851 (v _{C—H}) 3088 (v _{O—H})	265 (14800) 382 (32000)
IIId	C ₂₁ H ₁₉ N ₃ O ₃	69	199201	<u>11,63</u> 11,55	1526, 1582 (v _{C=C}) 1726 (v _{C=O}) 2972, 2931 (v _{C-H})	241 (16500) 283 (11400) 441 (51000)
Ille	C ₂₂ H ₂₁ N ₃ O ₃	72	231232	<u>11,19</u> 11,12	1529, 1621 (v _{с•с}) 1730 (v _{с•о}) 2963, 2923 2870 (v _{с-н})	247 (20400) 287 (13800) 441 (55000)
IIIf	C ₂₁ H ₁₈ N ₃ O ₃ Cl	56	195197	<u>10,62</u> 10,71	1582, 1618 (ν _{C=C}) 1735 (ν _{C=O}) 2968, 2928 (ν _{C=H})	250 (16000) 440 (54200)
IIIg	C ₂₀ H ₁₈ N ₄ O ₃	74	220222	<u>15,46</u> 15,57	1524, 1580 (v _{C=C}) 1724 (v _{C=O}) 2978, 2934 (v _{C-H})	251 (13700) 446 (48600)
IIIh	$C_{21}H_{12}N_2O_3$	76	223225	<u>8,23</u> 8,36	1564, 1603 (ν _{C=C}) 1751 (ν _{C=O})	231 (49300) 261 (37400) 393 (21100)
IIIi	C ₂₃ H ₁₆ N ₂ O ₄	82	234236	<u>7.56</u> 7,49	1566, 1611 (ν _{C=C}) 1739 (ν _{C=O})	265 (27000) 394 (27300)

TABLE 1. Characteristics of the Compounds Synthesized


We found that when the compounds (IIa-i) are heated in high-boiling solvents (o-dichlorobenzene, nitrobenzene, quinoline) or when the reaction is performed in a melt for 10-30 min, they are readily converted with good yields to the 3-(1,3,4-oxadiazol-2-yl)coumarins (IIIa-i) (Tables 1, 2).

On account of amide—imidol tautomerism, the 2-(N-aroylhydrazono)coumarin-3-carboxamides (IIa-i) probably have the capacity for intramolecular attack of the hydroxyl group of the imidol form at the electrondeficient carbon atom at the position 2 of the coumarin. Opening of the iminolactone ring and closing of the 1,3,4oxadiazole ring thereby occur. Further, the intermediate undergoes *cis-trans* isomerization, and repeated nucleophilic attack occurs at the carbamide group, leading to the formation of the lactone ring.

The characteristics of the 3-(1,3,4-oxadiazol-2-yl)coumarins obtained by the proposed method and by the cyclization of $N_{(1)}$ -acylamidrazones of coumarin-3-carboxylic acids are identical. However, the products formed in the recyclization of the 2-(N-aroylhydrazono)coumarin-3-carboxamides (IIa-i) are obtained purer and, as a rule, with higher yields since the cyclization of $N_{(1)}$ -acylamidrazones to 1,3,4-oxadiazoles may be accompanied by the formation of 1,3,4-triazole derivatives.

It was established that the introduction of substituents of an electron-donor nature into the molecule of (IIa-i), both into the nucleus of the coumarin fragment and into the aryl group, appreciably facilitates the recyclization process. In contrast, electron-acceptor groups appreciably decrease the rate of the reaction. That is

probably associated with the stabilization of the imidol form of the compound (IIa-i) due to the conjugation of the aryl and coumarin part. In the case of electron-acceptor substituents, the reaction should be conducted under more drastic conditions, for example by increasing the time of heating, or by utilizing quinoline as the reaction medium.

TABLE 2. P	'MR Spect	al Characteris	tics of t	he Compounds	Synthesized
(DMSO-d ₆)					

Com-	Chemical shift, δ, ppm					
pound	1H, s, 4-H	Harom	other protons			
Illa	9,02	7,458,13 (9H, m)				
IIIb	9,01	7,48 (4H, m, (8,6,3',5')-H); 7,75 (1H, t, 7-H) 7,96 (1H, d, 5-H); 8,17 (2H, m, (2',6')-H)	—			
Illc	8,85	6,82 (1H, s, 8-H); 7,64 (4H, m, (3',4',5',5)-H) 8,09 (2H, m, (2',6')-H)	0,86 (3H, t, C <u>H</u> ₃ (CH ₂) ₄ CH ₂) 1,30 (8H, m, CH ₃ (C <u>H₂)₄CH₂) 1,56 (2H, m, CH₃(CH₂)₄C<u>H₂)</u> 11,09 (1H, s, OH)</u>			
IIId	8,62	6,55 (1H, d, 8-H); 6,70 (1H, dd, 6-H) 7,527,60 (4H, m, (3',4',5',5)-H) 8,058,12 (2H, m, (2',6')-H)	1,21 (6H, t, N(CH ₂ C <u>H₃)2)</u> 3,50 (4H, q, N(C <u>H</u> 2CH ₃)2)			
IIIe	8,66	6,61 (1H, d, 8-H); 6,82 (1H, dd, 6-H) 7,45 (2H, d, (3',5')-H); 7,65 (1H, d, 5-H) 7,96 (2H, d, (2',6')-H)	1,17 (6H, t, N(CH ₂ C <u>H₃)₂)</u> 2,42 (3H, s, CH ₃) 3,50 (4H, q, N(C <u>H₂CH₃)₂)</u>			
IIIf	8,63	6,56 (1H, d, 8-H); 6,75 (1H, dd, 6-H) 7,527,68 (4H, m, (3',4',5',5)-H) 8,04 (1H, dd, (2')-H)	1,20 (6H, t, N(CH ₂ C <u>H₃)2)</u> 3,49 (4H, q, N(C <u>H</u> 2CH ₃)2)			
IIIg	8,75	6,61 (1H, d, 8-H); 6,80 (1H, dd, 6-H) 7,63 (1H, d, 5-H); 7,97 (2H, d, β-H) 8,84 (2H, d, α-H)	1,15 (6H, t, N(CH ₂ C <u>H</u> ₃) ₂) 3,48 (4H, q, N(C <u>H</u> ₂ CH ₃) ₂)			
IIIh	9,61	7,567,67 (5H, m, (3',5',4,7,10)-H) 7,79 (1H, t, 6-H); 8,05 (1H, d, 5-H) 8,20 (2H, m, (2',6')-H); 8,29 (1H, dd, 8-H) 8,71 (1H, d, 9-H)				
IIIi	9,59	7,13 (2H, dd, (2',6')'-H); 7,60 (1H, d, 10-H) 7,66 (1H, d, 7-H); 7,80 (1H, t, 6-H) 8,038,16 (3H, m, (5,2',6')-H) 8,28 (1H, d, 8-H); 8,73 (1H, d, 9-H)	2,76 (3H, s, OCH ₃)			

As follows from the physicochemical data (Tables 1 and 2), the IR spectra of the compounds synthesized show the strong band of the stretching vibrations of the C=O lactone group of the coumarin ring at 1724-1751 cm⁻¹. The C=C bands of the aromatic vibrations appear at 1580-1630 cm⁻¹. The vibrations of the C=N bonds of the 1,3,4-oxadiazole ring are virtually unseen.

The PMR spectra of the compounds obtained contain signals of the aromatic protons at 6.55-8.84 ppm and the singlet of the proton at the position 4 of the coumarin at 8.62-9.61 ppm (Table 2).

Therefore, it follows from the facts presented that it is expedient to utilize the cyclization of $N_{(1)}$ -acylamidrazones of coumarin-3-carboxylic acids for the synthesis of 3-(1,3,4-triazol-2-yl)coumarins [2], whereas the method based on the recyclization of 2-(N-aroylhydrazono)coumarin-3-carboxamides has significant advantages for the synthesis of 3-(1,3,4-oxadiazol-2-yl)coumarins.

EXPERIMENTAL

The IR spectra of the compounds synthesized were registered on the Specord M-80 spectrometer using tablets of KBr. The ESA was measured on the Specord M-40 spectrophotometer in ethanol. The PMR spectra were recorded on the Bruker WM-360 instrument in DMSO- d_6 , and the internal standard was TMS.

General Method for the Synthesis of 2-(N-Aroylhydrazono)coumarin-3-carboxamides (IIa-i). The corresponding 2-iminocoumarin-3-carboxamide (0.01 mol) is dissolved in 20-25 ml of glacial acetic acid. To the resulting solution are added equimolecular amounts of the aromatic acid hydrazide. The mixture is acidified with 1-2 drops of concentrated H_2SO_4 , carefully stirred, heated to 40-50°C, and left for 2-3 h. The precipitated residue is filtered off, washed with ethanol, and dried.

General Method for the Synthesis of 3-(5-Aryl-1,3,4-oxadiazol-2-yl)coumarins (IIIa-i). The corresponding 2-(N-aroylhydrazono)coumarin-3-carboxamide (0.005 mol) is heated in the minimal amount of nitrobenzene or another high-boiling solvent for 10-40 min. The mixture is cooled. The precipitated residue is filtered off, washed carefully with ether, and recrystallized from a suitable solvent.

REFERENCES

- 1. S. N. Kovalenko, M. V. Vasil'ev, I. V. Sorokina, V. P. Chernykh, A. V. Turov, and S. A. Rudnev, Khim. Geterotsikl. Soedin., No. 12, 1664 (1998).
- 2. S. N. Kovalenko, V. A. Zubkov, V. P. Chernykh, A. V. Turov, and S. M. Ivkov, Khim. Geterotsikl. Soedin., No. 2, 186 (1996).
- 3. V. A. Zubkov, S. N. Kovalenko, V. P. Chernykh, and S. M. Ivkov, Khim. Geterotsikl. Soedin., No. 6, 760 (1994).